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In certain manufacturing processes, accurate numerical readings are difficult to collect due to time or resource constraints. Alterna-
tively, low-resolution categorical observations can be obtained that can act as feasible and low-cost surrogates. Under such situations,
all classic statistical quality control activities, such as model building, parameter estimation, and feedback adjustment, have to be
done on the basis of these categorical observations. However, most existing statistical quality control methods are developed based
on numerical observations and cannot be directly applied if only categorical observations are available. In this research, a new online
approach for parameter estimation and run-to-run process control using categorical observations is developed. The new approach
is built in the Bayesian framework; it provides a convenient way to update parameter estimates when categorical observations arrive
gradually in a real production scenario. Studies of performance reveal that the new method can provide stable estimates of unknown
parameters and achieve effective control performance for maintaining quality.

Keywords: Categorical observations, parameter estimation, Bayesian method, Gibbs sampling, statistical process adjustment,
statistical process control

1. Introduction

Statistical Process Adjustment (SPA) has been shown to
be an efficient approach for ensuring output quality, im-
proving production efficiency, and diminishing defects for
Run-to-Run (R2R) processes in semiconductor manufac-
turing (Del Castillo, 2006). In a R2R process, a typical SPA
algorithm utilizes process output and other environmental
information to generate recipes for process adjustment. As
noted by Del Castillo (2006), information used by the SPA
framework can be versatile; the decision process to generate
recipes can be viewed as a high-level control loop that may
involve human factors and advanced statistical techniques.
Extensive research on R2R process control has been
reported in the literature, including the creation of the Ex-
ponentially Weighted Moving Average (EWMA) controller
and its extensions (Ingolfsson and Sachs, 1993; Tseng
et al., 2007; Jin and Tsung, 2009), double EWMA
controller (Chen and Guo, 2001), and the self-tuning
controller (Del Castillo and Hurwitz, 1997). It should be
noted that all of these commonly used controllers work on
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one condition; that is, quality readings are measured on a
numerical scale.

Nevertheless, low-resolution categorical data are fre-
quently seen in certain processes in semiconductor man-
ufacturing nowadays when practical constraints limit
the availability of numerical values. For instant, time-
consuming measurement operations must be avoided in a
high-yield process to guarantee production efficiency. Some
high-precision equipment may be too expensive and not
all processes have the capability to provide accurate mea-
surements. Under such circumstances, conventional R2R
controllers that rely on numerical values cannot be applied
directly; some novel process control strategies using cate-
gorical observations have been designed to handle this new
challenge (Spanos and Chen, 1997; Wang and Tsung, 2007;
Shang et al., 2008).

Spanos and Chen (1997) studied a dry develop process in
which the quality characteristics were measured on a scale
of “very rough,” “rough,” “smooth,” and “very smooth.”
The authors built logistic regression models to characterize
the relationship between output variables and controllable
factors of the process. However, the models were built as-
suming that a historical offline dataset was available. On-
line observations were not used for model estimation or
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update. Wang and Tsung (2007) proposed a feedback con-
troller for categorical observations; however, the authors
also assumed that an offline dataset was available for Phase
I model building. Following the work of Wang and Tsung
(2007), Shang et al. (2008) improved the controller by con-
sidering misclassifications. However, the authors did not
consider the model estimation issue; the process model and
all parameters were still assumed to be known in advance.
Lin and Wang (2010) proposed a control scheme using
an adjusted Maximum Likelihood (ML) function. How-
ever, the performance of the adjusted ML method heavily
depended on the tuning parameter used by the method.
An inappropriate parameter setting could lead certain es-
timates to infinite (Chipman and Hamada, 1996).

The successfull implementation of process adjustment
strategies in an R2R process requires the developement of
an appropriate model, obtaining estimates of unknown pa-
rameters, and providing feedback-control algorithms based
on available information. All of these tasks, therefore, are
dominated by the type, amount, and style of information
that can be collected. In this research, we use the lapping
process in semiconductor manufacturing as an example and
propose a new Bayesian framework for statistical quality
control. The new framework works on the basis of categor-
ical observations and estimates and updates parameters
using the Bayesian method. We expect that the Bayesian
method can use categorical information more effectively,
provide more accurate estimates of parameters, and gener-
ate better control performance, compared with the adjusted
ML method in Lin and Wang (2010).

Lapping is a very important step in the wafer prepa-
ration process, which usually consists of slicing, lapping,
chemical vapor deposition, and polishing. As the first me-
chanical treatment step on a wafer surface after slicing,
lapping is critical to forming high-level quality characteris-
tics for downstream fabrication. Among others, thickness
is one geometric quality attribute that needs to be carefully
controlled. However, accurate thickness values can only
be obtained in a special inspection room using an expen-
sive testing machine, which is both time-consuming and
costly. In practice, wafers are only moved to the inspec-
tion room for quality inspection after the polishing oper-
ation has been completed. Therefore, no timely accurate
data can be provided for implementing R2R control of the
lapping process. Alternatively, right after the lapping op-
eration, a less expensive but inaccurate machine is used to
help operators group lapped wafers into five different cat-
egories, labeled as “very thin,” “thin,” “normal,” “thick,”
and “very thick.” Therefore, low-resolution categorical ob-
servations are available for R2R control of the lapping
process.

The thickness of the lapped wafers is largely dominated
by the lapping time and the thickness before the lapping
step. The latter is the incoming wafer thickness generated
by the slicing stage, which cannot be changed. Therefore,
lapping time is the only controllable factor during produc-

tion. To achieve an ideal thickness, the lapping time usually
needs to be adjusted between runs, based on the other nu-
merical inputs and categorical output. However, with only
categorical observations available as the output of each run,
the traditional EWMA controller is not applicable. Hence,
a new controller that can generate control actions using
categorical data is needed for this process.

This research intends to develop a quality control scheme
using categorical observations following the Bayesian
framework. The application of Bayesian methods for pa-
rameter estimation using categorical information has al-
ready been discussed in the existing literature. Chipman and
Hamada (1996) proposed a Bayesian approach to estimate
parameters in a Generalized Linear Model (GLM) with
categorical variables using Gibbs sampling; their discus-
sion used the assumption that the categorical observations
were uncorrelated. Girard and Parent (2001) adjusted this
Bayesian GLM and extended it to cases with autocorrelated
observations. Lawrence et al. (2008) studied parameter esti-
mation under multivariate categorical output. It should be
noted that all of these methods work in an offline manner
by assuming that historical observations have already been
collected before model fitting. However, in an R2R process,
products are produced batch by batch. With units sampled
and measured for each batch (or run), data arrive gradu-
ally. Therefore, it is necessary and important to extend the
Bayesian method to handle categorical data streams that
grow step by step.

Jen and Jiang (2008) proposed a system that integrated
R2R control, evolutionary operation, and response sur-
face modeling. In this system, online experiment data were
utilized to update estimated parameters, renew the pro-
cess model, and obtain new recipes. Vanli and Del Castillo
(2009) investigated an online Bayesian robust control prob-
lem and presented two new Bayesian approaches. To incor-
porate growing categorical data streams for SPA, Wang and
Tsung (2010) constructed a Bayesian framework for recur-
sive parameter estimation using Gibbs sampling. However,
they only studied the estimation of parameters in the lin-
ear process model, while assuming the cutoff parameters
to be known. Cutoff parameters, also called cut-points, are
a vector against which samples are classified into mutu-
ally exclusive categories. A model that is critical to cat-
egorical observations generation will be presented in the
following section. The cut-points can be seen as hidden
rules in generating output against a categorical scale; these
points cannot be measured directly and therefore need to be
estimated.

In this research, we aim to propose a Bayesian framework
for online parameter estimation and process adjustment
based on categorical observations. The rest of this article is
organized as follows. Section 2 introduces a general model
for R2R processes with categorical observations. Based on
this model, Section 3 presents the Bayesian method for
online parameter estimation and process adjustment us-
ing categorical data; Section 4 studies the performance of
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the Bayesian framework. Finally, Section 5 concludes this
article with potential topics for future research.

2. Process modeling

To characterize an R2R process, most existing literature
(see, for example, Del Castillo and Hurwitz (1997), Wang
and Tsung (2007, 2008, 2010), and Shang et al. (2008))
has chosen a linear model due to its simplicity. In fact,
within a normal operational range, many R2R processes
can be approximated by a linear model. Othman et al.
(2006) showed that a linear model can be used to illustrate a
lapping process. In this research, we also studied the lapping
process via experimental design and found that the lapping
process is adequately represented by the following equation:

yt = a + but−1 + cxt + εt, (1)

where yt is the process output at time t; ut−1 is the lapping
time set at time t − 1, which is the control factor; and xt is
the thickness of the incoming wafer from the slicing stage,
which is observable but cannot be changed. Also, εt is pro-
cess disturbance, and a, b, c are all coefficients. Without
loss of generality, we assume εt ∼ N(0, σ 2).

It is worth noting that although developed from the lap-
ping process, the model in Equation (1) is quite general and
can be used to illustrate a wide range of processes with con-
tinuous input and output variables. For example, a similar
form has been used by Ruegsegger et al. (1999) to illustrate
a reactive ion etching process; Chen and Guo (2001) used a
similar model (without considering the impact of incoming
dimensions) to characterize a chemical–mechanical process
in wafer fabrication.

The disturbance sequence in Equation (1) is assumed to
be a normally distributed white noise series. That is, the
process is assumed to be stable. This assumption generally
holds for the lapping process since its material removal rate
is very slow and the machine can be treated as a stable
process. Theoretically speaking, a process already on tar-
get under white noise needs no further process adjustment.
However, initial bias often exists in real processes, espe-
cially in short-run processes. The lapping process is such
a short-run process. It has to be stoped each day between
shifts; such stops cause the lapping machine to cool down
during the break in production, thus leading to serious bias
during the following warm-up period. In addition, different
customer orders use different single-crystal silicon ingots,
which cause the physical and mechanical properties of sil-
icon wafers to change from order to order. Such changes
often influence machine performance (e.g., removal speed).
Therefore, the parameters in Equation (1) have to be up-
dated continuously; R2R control should be implemented
in this process to compensate for deviations.

In Equation (1), the numerical variable yt cannot be
obtained directly in the situations introduced in Section 1,
including the studied lapping process. Therefore, we can
treat yt as a latent variable. An observable categorical

variable, denoted by Yt, is assumed to be linked with
yt by the following mapping function (see, for example,
Chipman and Hamada (1996), Girard and Parent (2001),
and Wang and Tsung (2007, 2010) for similar treatment of
categorical variables):⎧⎨

⎩
Yt = 1 if yt < γ1,

Yt = j if γ j−1 < yt ≤ γ j , j = 2, . . . , c − 1
Yt = c if yt > γc−1,

, (2)

where γ = [γ1, . . . , γc−1]T is the vector of the cutoff
parameters that are used to classify samples into different
categories.

In a real scenario, the intercept a in the linear model is a
function of the temperature of the lapping pan and machine
setup when a new order arrives, whereas the other coeffi-
cients b and c are relatively stable. Therefore, in this research
b and c are assumed to be known from experience. The pro-
posed method, however, can be extended to estimate and
update these parameters without much difficulty. The wafer
thickness before lapping, xt, would be measured accurately
after slicing; hence, it is known in the lapping stage. The
cutoff points in Equation (2) cannot be measured directly;
thus, they are unknown and need to be estimated.

3. Bayesian online estimation based on categorical
observations

Let θ = {a, γ } be a set of unknown parameters to be es-
timated. In this section, we present a Bayesian framework
for estimating and updating the unknown parameters θ on-
line and generating control actions. This online method as-
sumes that observations arrive smoothly and continuously.
Whenever a run finishes and a new observation arrives,
it will be utilized to update parameters and generate an
optimal recipe for a new run. The integration of new ob-
servations of parameter estimation is conceptually shown
in Fig. 1. When a new run finishes and a new observation
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Fig. 1. A conceptual plot of the Bayesian framework.
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is available, a prior estimate of the parameters is updated
based on Bayesian inference equations; a posterior esti-
mate is then obtained. This posterior serves the prior of
the next run. Therefore, with new observations arriving
continuously, estimates of parameters are expected to be
increasingly accurate.

To construct a Bayesian framework for online param-
eter estimation, we need to go through two steps: first,
choose an appropriate prior distributions; second, derive
posterior distributions by integrating priors and samples.
In Section 3.1 we introduce the prior and posterior dis-
tributions. However, due to the special type of categorical
observations, it is difficult to obtain closed forms for all
posterior distributions. Therefore, in Section 3.2, we de-
rive the full conditional distribution of each parameter and
then propose using Gibbs sampling to update its estimates.
Gibbs sampling provides a convenient way for Bayesian
estimation since it only requires full conditional distribu-
tions, which is usually much easier to obtain. In Section
3.3 we outline the whole procedure, and in Section 3.4 we
present equations for R2R adjustment based on estimated
parameters.

3.1. Prior and posterior distributions for online estimation

To use a Bayesian framework to update parameters, prior
distributions for unknown parameters θ need to be chosen

first. In a continuous updating scenario, it is reason-
able to assume that a follows a normal distribution
N(a0, σ

2
a ), γ ∼ N(γ0, �γ,0), where I is the identity matrix,

γ0 = (γ1,0, . . . , γc−1,0)T, and �γ,0 = σ 2
γ,0 I. When estima-

tion evolves, the impact of such assumptions will diminish
gradually.

During parameter estimation, the value of the cutoff pa-
rameter is required to satisfy that γmin < γ1 < γ2 < · · · <

γc−1 < γmax. That is, the cut-points must form an ordered
sequence and stay within a feasible range during the update.
The joint posterior at step t is denoted by f (θ |Yt, . . . , Y1),
and when a new categorical observation Yt+1 is made, it is
immediately utilized to update the current posterior based
on the Bayes rule; that is,

f (θ |Yt+1 , Yt, . . . , Y1) ∝ f (Yt+1 |θ ) × f (θ |Yt, . . . , Y1)
= f (Yt+1 |a,γ ) × f (θ |Yt, . . . , Y1) .

3.2. Full conditional distribution for Gibbs sampling

Due to the complex form of the parameter distribu-
tions, it is difficult to calculate the updated posterior
f (θ |(µt, �t), Yt+1) directly in this application. Therefore,
we add a latent variable yt+1 and use Gibbs sampling
to simulate all distributions. Gibbs sampling is a con-
venient way to derive marginal distributions in Bayesian
analysis. It sequentially draws samples from each pa-
rameter’s full conditional distribution (the distribution
of one parameter given all other parameters); the se-
quence of samples can be used to estimate marginal
distributions. Therefore, to estimate parameter values, it
is sufficient to obtain each parameter’s full conditional
distribution.

To perform Gibbs sampling, the sampled chain should
satisfy the ergodicity property to ensure convergence.
However, in the online estimation framework, if the ex-
act estimated posteriors are used, the ergodicity prop-
erty of cutoff parameter γ j cannot be guaranteed. In
its full conditional distribution below, it can be seen
that the sampling would be constrained by the estimated

latent variables before {∧
ys, s ≤ t}; while {∧

ys, s ≤ t} are
only the estimated values, not the true ones (true val-
ues are never known), the generated sample of γ j might
be unable to reach the whole space of its true posterior
distribution.

f
(
γ j |a, {γi , i �= j} , yt+1, Yt+1, Yt, . . . , Y1

) ∝

⎧⎪⎨
⎪⎩

f
(
γ j |Yt, . . . , Y1

) × I
(
γ j−1 < γ j < yt+1

)
, j = Yt+1 − 1,

f
(
γ j |Yt, . . . , Y1

) × I
(
yt+1 < γ j < γ j+1

)
, j = Yt+1,

f
(
γ j |Yt, . . . , Y1

) × I
(
γ j−1 < γ j < γ j+1

)
, o.w.⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

N
(
µγ j ,0, σ

2
γ j ,0

) × I
(

max
s≤t

{∧
ys |Ys = j − 1

}
< γ j < min

s≤t

{∧
ys |Ys = j

}) × I
(
γ j−1 < γ j < yt+1

)
, j = Yt+1 − 1,

N
(
µγ j ,0, σ

2
γ j ,0

) × I
(

max
s≤t

{∧
ys |Ys = j − 1

}
< γ j < min

s≤t

{∧
ys |Ys = j

}) × I
(
yt+1 < γ j < γ j+1

)
, j = Yt+1,

N
(
µγ j ,0, σ

2
γ j ,0

) × I
(

max
s≤t

{∧
ys |Ys = j − 1

}
< γ j < min

s≤t

{∧
ys |Ys = j

}) × I
(
γ j−1 < γ j < γ j+1

)
, o.w.

One solution to this problem is that at the end of each
step the estimated posterior is approximated by a paramet-
ric distribution that could only have value in the entire real
axis. Solla and Winther (1999) presented an optimal online
learning method using a Bayesian approach. The exact pos-
terior distribution is approximated by a simple parametric
distribution and each new observation is utilized for poste-
rior update. Following the method proposed by Solla and
Winther (1999), we now propose an updating framework
for the posteriors.

Here the joint posterior f (θ |Yt, . . . , Y1) is approximated
by a multivariate normal distribution N(θ |µt, �t), where
µt is the mean vector of θ , also treated as the estimates of
θ at step t, and �t is the covariance matrix. Notice that
here we assume the covariance matrix to be diagonal, due
to computation simplicity, which implies that a and cutoff
parameters are independent; thus, the sample mean and
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variance of each parameter could be used as the estimates.
When a new categorical observation Yt+1 arrives, the cur-
rent posterior now becomes

f (θ |(µt, �t), Yt+1) ∝ f (Yt+1|θ ) × N(θ |µt, �t),

which can be decomposed to

f (θ |(µt, �t), Yt+1) ∝ f (Yt+1|a,γ) × N(a|µa,t, σ
2
a,t)

×N(γ|µγ,t, �γ,t), (3)

in which µa,t is the mean of a, µT
γ,t is the mean of vector of

γ, σ 2
a,t is the variance of a, σ 2

γi ,t is the variance of γi , µt =
(µa,t, µ

T
γ,t)

T, and �t = diag(σ 2
a,t, σ

2
γ1,t, . . . , σ 2

γc−1,t). Then
the updated parametric posterior N(θ |µt+1, �t+1) is ap-
proximated by f (θ |(µt, �t), Yt+1), by choosing the param-
eter values (µt+1, �t+1) to be equal to the mean and covari-
ance matrix of f (θ |(µt, σ

2
t ), Yt+1). Such an approximation

minimizes the Kullback-Leibler distance between the two
distributions (Saad, 1998).

Then the full conditional distributions need to be
calculated. In this application, the conditional distri-
butions of three sets of parameters are to be esti-
mated; that is, the distribution of the latent variable,
f (yt+1|a,γ, (µt, �t), Yt+1), the distribution of the inter-
cept parameter f (a|yt+1,γ, (µt, �t), Yt+1), and the dis-
tributions of the cutoff parameters, f (γ j |a, {γi , i �= j},
yt+1, (µt, �t), Yt+1), ( j = 1, . . . , c − 1).

At each step, once the categorical variable, Yt+1, is ob-
served, we first investigate the full conditional distribution
of yt+1 using the following formula:

f (yt+1|a,γ, (µt, �t), Yt+1) ∝ N(a + but + cxt+1, σ
2)

×I(γYt+1−1 < yt+1 < γYt+1 ), (4)

which is a normal distribution truncated by the boundaries
of the category that it falls within.

Based on the joint posterior distribution and Bayes’ the-
orem, the full conditional distribution of a can be written as

f (a|yt+1,γ, (µt, �t), Yt+1) ∝ N(µa,t, σ
2
a,t)

× f (yt+1, Yt+1|a,γ). (5)

given that

f (yt+1, Yt+1 |a,γ ) = f (yt+1 |a,γ ) × f (Yt+1 |yt+1, a,γ )
∝ N

(
a + but + cxt+1, σ

2) × I
(
γYt+1−1 < yt+1 < γYt+1

)
.

If we treat Equation (5) as a function of a and we move
all constants independent of a, the density function of a
can be reduced to

f
(
a

∣∣yt+1,γ, (µt, �t) , Yt+1
)

∝ N
((

µa,t

σ 2
a,t

+ yt+1 − but − cxt+1

σ 2

)/

×
(

1

σ 2
a,t

+ 1
σ 2

)
, 1

/(
1

σ 2
a,t

+ 1
σ 2

))
, (6)

where µa,0 = a0, and σ 2
a,0 = σ 2

a .

The full conditional distribution of the cutoff parame-
ters can be derived similarly, with an additional constraint
condition γmin < γ1 < γ2 < · · · < γc−1 < γmax, where γmin
and γmax are the lower and upper bounds of γ. Thus, the
samples of each cutoff point drawn from Gibbs sampling
should also satisfy the restriction, which guarantees that
the estimates of cutoff parameters, the sample means from
Gibbs sampling, never overlap with each other. The full
conditional distribution of γ j used in Gibbs sampling is

f (γ j |a, {γi , i �= j}, yt+1, (µt, �t), Yt+1)

∝

⎧⎪⎪⎨
⎪⎪⎩

N
(
µγ j ,t, σ

2
γ j ,t

)× I(γ j−1 <γ j < yt+1), j =Yt+1−1,

N
(
µγ j ,t, σ

2
γ j ,t

)× I(yt+1 <γ j <γ j+1), j =Yt+1,

N
(
µγ j ,t, σ

2
γ j ,t

)× I(γ j−1 <γ j <γ j+1), o.w.

(7)

3.3. Online parameter estimation procedures

Now that the full conditional distributions are ready, we
can now outline the procedure to estimate and update pa-
rameters at each step when a new observation arrives.

When a new categorical observation Yt+1 is collected,
the Gibbs sampling procedure starts to sample yt+1, a,
and γ1, . . . , γc−1 repeatedly for a sufficiently large num-
ber of times. The updated parameter values in the approxi-
mated normal distribution N(θ |µt+1, �t+1) can be obtained
by calculating the sample mean and variance of a and
γ1, . . . , γc−1 with the initial samples removed. The sam-
pling process for each run of online estimation can be out-
lined as follows:

Step 1. Sample one yt+1 from Equation (4).
Step 2. Using the approximated normal distribution of a,

N(µa,t, σ
2
a,t) estimated in the previous run as a prior

and yt+1 sampled from Step 1, calculate the condi-
tional distribution of a for run t + 1 in Equation
(6).

Step 3. Sample an a from its conditional distribution ob-
tained from Step 2.

Step 4. Using the approximated normal distribution of γ j ,
N(µγ j ,t, σ

2
γ j ,t) estimated in the previous run as a

prior, yt+1 sampled from Step 1 and a from Step 3,
calculate the conditional distribution of γ j for run
t + 1 in Equation (7).

Step 5. Sample γ1, . . . , γc−1 in sequence from their respec-
tive conditional distribution, with one element at a
time.

Step 6. Using the newly sampled a and γ, update the
conditional distribution of yt+1 and go back to
Step 1.

Step 7. Repeat Steps 1–6 until reaching a sufficiently large
number of times and the Gibbs sampling procedure
is stable.

The above steps are conducted when the sample at step
t+1 arrives. With a large number of sequentially drawn
samples, we can calculate the mean and variance of a and γ j
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and obtain the posterior distributions of these parameters,
N(µa,t+1, σ

2
a,t+1) and N(µγ j ,t+1, σ

2
γ j ,t+1).

Compared with the estimates obtained at Step t, the
new updates contain information conveyed by observation
Yt+1. When another observation, Yt+2, becomes available,
the whole procedure will be repeated again to further inte-
grate the information conveyed by Yt+2. With new obser-
vations arriving continuously, the estimates of parameters
are expected to approach their respective true values.

3.4. A Bayesian controller

To control the process on target and compensate for initial
bias, at the end of each run, a recipe should be generated
under a specific criterion to minimize process variability.
Denote the target of the process in Equation (1) as T. We
define the following quadratic loss function conditioning
on all historical information as the objective of process
adjustment at step t + 1:

L = E[(yt+2 − T)2 |Yt+1, . . . , Y1 ]. (8)

Equation (1) shows that yt+2 = a + but+1 + cxt+2 + εt+2
and E(ε2

t+2) = σ 2; thus, it follows that:

L = (a − cxt+2 − T)2 + b2u2
t+1

+ 2(a − cxt+2 − T)but+1 + σ 2.

Taking the partial derivative of the above equation with
respect to ut+1 as zero and replacing the unknown param-
eter with its estimate leads to the optimal control action:

ut+1 = T − a(t+1) − cxt+2

b
, (9)

where a(t+1) is the estimation of a at step t + 1. That is,
at each run, using Equation (9) to adjust a process, the
quality loss function defined in Equation (8) is expected to
be minimized.

As the above controller is derived using a Bayesian
framework, we call it a Bayesian controller. It is inter-
esting to see that the Bayesian controller is similar to
the popular EWMA controller. Both controllers use a
continuously updated intercept parameter to calculate con-
trol actions. However, the EWMA controller updates a
using an EWMA equation that relies on continuous obser-
vations, whereas the Bayesian controller updates a using a
Bayesian framework that relies on categorical observations.

4. Performance studies

In this section, we investigate the performance of the pro-
posed method and compare it with existing methods.

The EWMA controller is a popular choice to control
R2R processes. It is known that the implementation of
an EWMA controller requires accurate numerical readings
to be available. Therefore, it is unfair to compare it with

the proposed method, which uses less accurate categori-
cal observations. However, in the following, we still show
the performance of the EWMA controller in controlling a
simulated process and compare the difference between the
EWMA and Bayesian controllers.

Wang and Tsung (2007) proposed a categorical controller
that generates control actions using categorical observa-
tions in a R2R process. The authors assumed that the pro-
cess model is built based on historical data; the model is
not updated once established. In this work, we assume that
initial bias exists and parameters are updated gradually. Al-
though it is somewhat unfair to compare these two meth-
ods, we still show the performance of categorical controller
for benchmarking.

Lin and Wang (2010) proposed an adjusted ML method
for online parameter estimation and process adjustment us-
ing categorical observations. Let θt be an estimate obtained
after the tth run and θt+1 be an estimate obtained after the
(t + 1)th run. Unlike the Bayesian method, the adjusted
ML method updates estimates of θ through maximizing
the following objective function:

F(θt+1) = η × log Pθt+1 (Y = j ) − 1
2

(θt+1 − θt)
2
,

where log Pθt+1 (Y = j ) is the log-likelihood function under
new parameters θt+1. The distance between new and orig-
inal estimates, (θt+1 − θt)2, is used as a penalty to balance
the magnitude of parameter changes and log-likelihood of
new observations. The tuning parameter, η, is the learning
rate to control the updating speed. Using a first-order Tay-
lor series for approximation and equaling the first-order
derivative to zero yields:

θt+1 = θt + η × d (log Pθt (Y = j ))
dθ

. (10)

Therefore, all parameters can be updated in a recursive
manner when new observations become available. The
adjusted ML method can estimate all parameters in
the model, including the cutoff parameters. Therefore, in
the following, we also compare the proposed method with
the adjusted ML method.

For all of the studied cases, the true model was set to
be the same as the one in Lin and Wang (2010). That is,
the target process follows Equation (1) with a = 60, b = 2,
c = 0.1, and a standard deviation σ = 3. The process tar-
get T equals 400, and four cut-points, 396, 398, 401, and
405, are used to classify output yt into five mutually exclu-
sive categories; that is, γ = [396, 398, 401, 405]. Here the
thickness before lapping xt is assumed to obey an uniform
distribution in the interval [450, 550].

4.1. A study of parameter estimation performance

To simulate possible initial bias in a process, in the first
study, we assumed that the prior mean of a and γ were 50
and [394, 396, 403, 407]T, respectively, and their standard
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Fig. 2. Trajectories of estimated parameters: (a) the mean of a; (b) the means of γ ; (c) standard deviation of a; and (d) standard
deviation of γ .

deviations were all six. In addition, considering real sce-
narios, the cut-points were restricted such that 392 < γ1 <

γ2 < γ3 < γ4 < 409. The process was simulated to over
200 steps, which corresponded to 200 runs in the lapping
process.

The Gibbs sampling method was set to repeat 10 000
times whenever a new observation was generated, and the
last 5000 samples were used to calculate the marginal dis-
tribution of each unknown parameter. That is, the chain
length was 10 000 and the burn-in period was 5000.
Geweke’s convergence diagnosit was used to check if this
setting was able to ensure the convergence. Since the p-
values for all of the estimated parameters in testing the first
10% and the last 50% samples of a single chain after the
burn-in period were all larger than 0.1, we concluded that
this choice was reasonable.

Figure 2 shows the trajectories of the mean and standard
deviation of estimated a and cutoff values. We can see from
Figs. 2(a) and 2(b) that the estimated parameters approach
their true values gradually as categorical observations are
collected run by run. Oscillation may exist in an early stage,
since at the beginning there are an insufficient number of
samples and the information contained in the categorical
data is comparatively rough. Nevertheless, after around

40 steps, the estimates are already very close to their true
values. From Figs. 2(c) and 2(d), it can be clearly seen
that the standard deviations of the estimated parameters
decrease sharply first and then gradually to reach a very
small value, which shows that the online algorithm can
give increasingly accurate estimates with smaller variance
using a stream of categorical data.

As the adjusted ML method in Equation (10) can be used
to estimate all of the parameters using categorical obser-
vations, in the following we compare its performance with
the proposed Bayesian framework in terms of parameter
estimation accuracy.

For different initial parameter settings, the process was
replicated 100 times; the mean and estimation errors (ab-
solute values between true and estimated parameters) and
Mean Squared Error (MSE) at certain steps (10th, 50th,
100th, and 200th steps) of the 100 paths were calculated
and are listed in Table 1. Note that the initial values for the
adjusted ML method are the initial estimates before col-
lecting any observation, whereas the ones for the Bayesian
method refer to the prior means for unknown parameters,
with all standard deviations in the prior distributions set to
six, which is a very large value and gives no advantage to
the Bayesian method.
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Table 1. Mean of estimation errors and MSE

Step

Method Initial values Statistics 10 50 100 200

Adjusted
ML

55 [395, 397, 402, 406] Mean 1.34 0.50 0.27 0.21
MSE 1.35 0.57 0.41 0.37

50 [394, 396, 403, 407] Mean 2.83 1.12 0.52 0.41
MSE 2.83 1.24 0.87 0.91

45 [393, 395, 404, 408] Mean 4.07 1.86 1.17 0.80
MSE 4.07 1.89 1.25 0.97

Bayesian 55 [395, 397, 402, 406] Mean 0.58 0.39 0.29 0.20
MSE 1.03 0.85 0.79 0.74

50 [394, 396, 403, 407] Mean 0.69 0.43 0.32 0.21
MSE 0.93 0.64 0.54 0.43

45 [393, 395, 404, 408] Mean 0.58 0.41 0.31 0.24
MSE 0.86 0.64 0.52 0.44

It can be seen from Table 1 that for any of the three stud-
ied cases, the Bayesian method performs much better than
the adjusted ML method in terms of parameter estima-
tion. For most cases, the Bayesian method gives a smaller
mean and MSE, especially when the initial values of the
estimated parameters are far from their true values. For the
Bayesian method, the estimates approach true values very
quickly in the first few steps; both the means of the errors
and MSE are already very small after 10 steps. Its conver-
gence rate becomes slower later on. Therefore, we conclude
that the Bayesian method has a much shorter delay be-
fore precise estimates can be achieved and generates more
accurate estimations when more categorical observations
become available; this algorithm is also quite robust to the
choice of initial values.

4.2. A study of process control performance

It is argued that when a process is contaminated by only
white noise, there is no need to control the process. In
Fig. 3, we show the sequences of controlled and uncon-
trolled output yt under the same settings as used above.

Fig. 3. Trajectories of process output with and without a con-
troller.

Table 2. Control performance comparison of different controllers

MSE

Step
CPU

Controller time (s) Initial values 10 50 100 200

Adjusted
ML

0.28 55 [395, 397, 402, 406] 5.02 3.57 3.27 3.03
50 [394, 396, 403, 407] 8.43 5.22 3.76 4.11
45 [393, 395, 404, 408] 12.59 6.80 5.44 5.02

Bayesian 1320 55 [395, 397, 402, 406] 3.49 3.10 3.10 3.50
50 [394, 396, 403, 407] 3.15 3.30 2.61 3.09
45 [393, 395, 404, 408] 3.04 3.16 2.79 2.60

EWMA 0.0023 55, — 3.09 3.14 2.94 3.08
50, — 3.56 2.98 3.21 3.03
45, — 3.43 3.10 3.53 3.48

Categorical 0.0021 — 5.97 5.84 6.21 7.03

Figure 3 clearly suggests that the uncontrolled output
strongly deviates from the target 6400, whereas the con-
trolled output is almost maintained on target. Therefore,
when initial bias is inevitable, it is still necessary to imple-
ment controllers to a process.

Next, we compare the control performance of the pro-
posed method with existing controllers, including the cate-
gorical controller, the popular EWMA controller, and the
adjusted ML method. For a better understanding of the
simulation results, the treatments applied to the different
controllers should be noted: (i) an accurate process output
is provided to the EWMA controllers to generate control
actions; and (ii) process parameters are assumed to be ex-
actly known for the categorical controller to work. For
comparison, the MSE from the target and the CPU time
(obtained on a personal computer with a Core 2 Duo 3G
Hz CPU and 2GB DDR2 memory) were calculated and
are presented in Table 2.

We can see from Table 2 that comparing the Bayesian and
EWMA controllers, their performances are quite close; the
EWMA controller can usually compensate for initial bias
faster since it has a smaller MSE in early steps. However,
after a certain number of runs, when the Bayesian controller
obtains a sufficiently accurate estimate of parameters, it
also should have competitive performance.

Compared with the adjusted ML and categorical con-
trollers, the Bayesian controller obviously gives the small-
est MSE at almost all four steps, especially after 10 steps.
Therefore, it shows that the Bayesian controller is more
efficient in controlling this process.

To illustrate the differences in the control performances
of these methods visually, the sequences of one realization
of process outputs are shown in Fig. 4. We can see that
the Bayesian and EWMA controllers can compensate for
initial bias and return the process output back to the target
value faster than the adjusted ML method. The categorical
controller shows no bias since we assume all parameters
are exactly known in setting up this controller. However, it
shows quite a large variation.
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Fig. 4. Trajectories of controlled outputs.

Computational requirements should also be considered
in the implementation of an online feedback controller. The
CPU time in Table 2 is calculated for the whole 200 runs.
It is clear that the Bayesian controller requires much more
computation time than the other methods, which is due to
the 10 000 nonsimulation length for the Gibbs sampling
of each run, whereas the 1320 s for 200 runs implies that
for each run, it takes about 6.6 s to generate the control
action for the next run. Hence, the computation expense of
the Bayesian controller is thought to also be acceptable in
practice.

5. Conclusions

New algorithms are needed to model and control an R2R
process when only categorical observations are available.
This article proposed a Bayesian framework for online
parameter estimation and updating when categorical obser-
vations are collected gradually. Based on the Bayesian es-
timation framework, we also derived a Bayesian controller
for controlling a process. Simulation studies revealed that
compared with existing methods, the proposed method can
give better performance in both parameter estimation and
process control.

In real applications, accurate numerical observations
may become available after a certain delay. If such de-
layed but accurate information could be used to calibrate
the model estimated based on categorical observations, the
performance in terms of parameter estimation and process
control is expected to be improved. This is an interesting
and important topic for practitioners and should be studied
in future research.
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